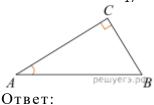
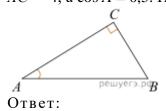

5×5

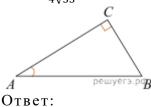
§1. ТРЕУГОЛЬНИКИ

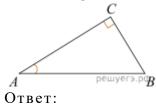

Прямоугольный треугольник

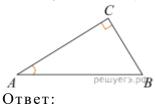
<u>1.</u> В треугольнике *ABC* угол *C* равен 90°, AC = 4.8, a sin $A = \frac{7}{25}$. Найдите *AB*.

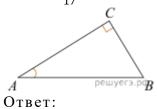


sin – противолежащий катет к гипотенузе cos – прилежащий катет к гипотенузе

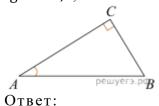

2. В треугольнике *ABC* угол *C* равен 90°, AC = 2, а $\sin A = \frac{\sqrt{17}}{17}$. Найдите *BC*.


3. В треугольнике ABC угол C равен 90° , AC = 4, а $\cos A = 0.5$. Найдите AB.

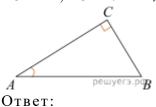

4. В треугольнике *ABC* угол *C* равен 90°, $tg A = \frac{33}{4\sqrt{33}}$, а AC = 4. Найдите *AB*.


5. В треугольнике ABC угол C равен 90°, AC = 8, a tg A = 0.5. Найдите BC.

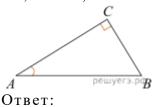
6. В треугольнике ABC угол C равен 90° , BC = 4, a $\sin A = 0.5$. Найдите AB.



7. В треугольнике ABC угол C равен 90° , $\cos A = \frac{\sqrt{17}}{17}$, а BC = 2. Найдите AC.

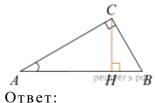

tg – противолежащий к прилежащему

8. В треугольнике ABC угол C равен 90°, tg A = 0.5, а BC = 4. Найдите AC.

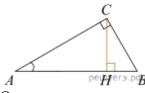


 $(катет1)^2 + (катет2)^2 = (гипотенуза)^2$

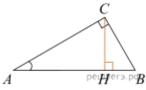
<u>**9.**</u> В треугольнике *ABC* угол *C* равен 90°, AC = 24, BC = 7. Найдите $\sin A$.



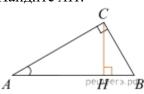
10. В треугольнике ABC угол C равен 90°, AC = 4, AB = 5. Найдите $\operatorname{tg} A$.



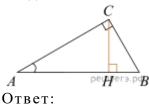
11. В треугольнике ABC угол C равен 90°, CH — высота, AB = 13, $tg A = \frac{1}{5}$. Найдите AH.


<u>высота</u> - отрезок, проведённый из вершины под прямым углом к противоположной стороне

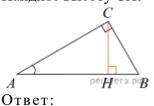
12. В треугольнике ABC угол C равен 90°, CH — высота, AB = 13, tg A = 5. Найдите BH.


Ответ:

13. В треугольнике ABC угол C равен 90°, AB = 13, tg $A = \frac{1}{5}$. Найдите высоту CH.

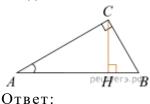

Ответ:

14. В треугольнике ABC угол C равен 90°, CH — высота, BC = 3, $\sin A = \frac{1}{6}$. Найдите AH.



Ответ:

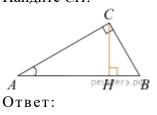
15. В треугольнике ABC угол C равен 90°, CH — высота, BC = 8, $\sin A$ = 0,5. Найдите BH.

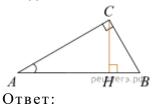


16. В треугольнике *ABC* угол *C* равен 90° , BC = 5, $\sin A = \frac{7}{25}$. Найдите высоту *CH*.



если в Δ -е из прямого угла провести высоту, то получатся подобные Δ -и, и одинаковые углы

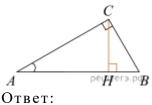

17. В треугольнике *ABC* угол *C* равен 90°, *CH* — высота, BC = 3, $\cos A = \frac{\sqrt{35}}{6}$. Найдите *AH*.


18. В треугольнике ABC угол C равен 90°, CH — высота, BC = 5, $\cos A = \frac{7}{25}$. Найдите BH.

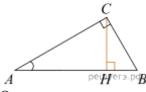
19. В треугольнике ABC угол C равен 90° , BC = 8, $\cos A = 0.5$. Найдите CH.

20. В треугольнике *ABC* угол *C* равен 90°, *CH* — высота, AC = 3, $\cos A = \frac{1}{6}$. Найдите *BH*.

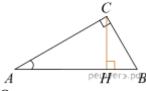
<u>5х5.рф</u>


Простая планиметрия

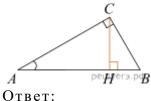
21. В треугольнике ABC угол C равен 90°, CH — высота, BC = 8, BH = 4. Найдите $\sin A$.



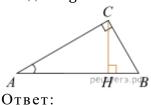
22. В треугольнике ABC угол C равен 90°, CH — высота, BC = 25, BH = 20. Найдите $\cos A$.


$$\left(a\sqrt{b}\right)^2 = a^2b$$

23. В треугольнике ABC угол C равен 90°, CH — высота, $BC = 4\sqrt{5}$, BH = 4. Найдите tg A.

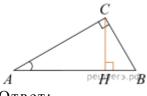

Ответ:

24. В треугольнике ABC угол C равен 90°, высота CH равна 20, BC = 25. Найдите $\sin A$.

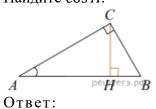


Ответ:

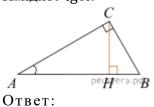
25. В треугольнике ABC угол C равен 90°, высота CH равна 4, BC = 8. Найдите $\cos A$.



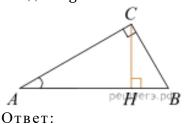
26. В треугольнике *ABC* угол *C* равен 90°, высота *CH* равна 4, $BC = \sqrt{17}$. Найдите tg *A*.


у равных углов равные sin, cos u tg

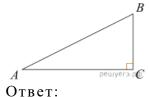
27. В треугольнике ABC угол C равен 90°, высота CH равна 24, BH = 7. Найдите $\sin A$.



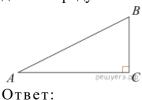
Ответ:


28. В треугольнике ABC угол C равен 90°, высота CH равна 7, BH = 24. Найдите $\cos A$.

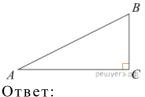
29. В треугольнике ABC угол C равен 90°, высота CH равна 8, BH = 4. Найдите tg A.



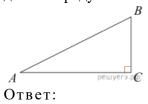
30. В треугольнике ABC угол C равен 90°, высота CH равна 4, BH = 3. Найдите tg A.

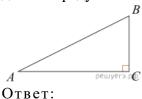


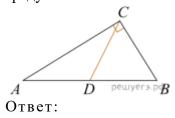
31. Один острый угол прямоугольного треугольника на 32° больше другого. Найдите больший острый угол. Ответ дайте в градусах.



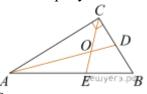
сумма всех углов треугольника всегда 180°


32. Один острый угол прямоугольного треугольника в 4 раза больше другого. Найдите больший острый угол. Ответ дайте в градусах.


33. Один острый угол прямоугольного треугольника на 2° больше другого. Найдите меньший угол треугольника. Ответ дайте в градусах.

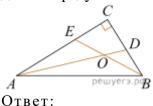

34. Один острый угол прямоугольного треугольника в 17 раза больше другого. Найдите больший острый угол. Ответ дайте в градусах.

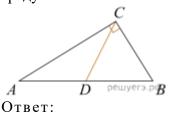
35. Один острый угол прямоугольного треугольника в два раза больше другого. Найдите меньший острый угол. Ответ дайте в градусах.


36. В треугольнике ABC угол ACB равен 90°, угол B равен 58°, CD — медиана. Найдите угол ACD. Ответ дайте в градусах.

медиана - отрезок из угла к середине стороны

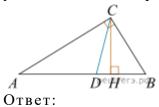
медиана, проведённая из прямого угла равна **половине гипотенузы**


<u>37.</u> Острый угол прямоугольного треугольника равен 32°. Найдите острый угол, образованный биссектрисами этого и прямого углов треугольника. Ответ дайте в градусах.

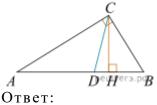

Ответ:

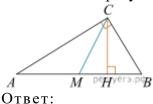
<u>биссектриса</u> – это крыса, которая бегает по углам и делит угол пополам (на два <u>равных</u> угла)

38. Найдите острый угол между биссектрисами острых углов прямоугольного треугольника. Ответ дайте в градусах.

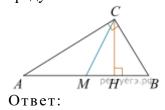

39. В треугольнике ABC угол ACB равен 90°, угол B равен 78°, CD — медиана. Найдите угол CDB. Ответ дайте в градусах.

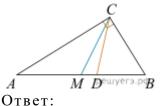
Простая планиметрия

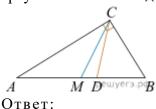

40. Острый угол B прямоугольного треугольника ABC равен 61°. Найдите угол между высотой CH и биссектрисой CD, проведёнными из вершины прямого угла. Ответ дайте в градусах.

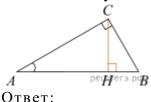

сначала находим те углы, которые **можем** найти в данный момент

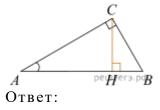
41. В прямоугольном треугольнике угол между высотой и биссектрисой, проведенными из вершины прямого угла, равен 21°.

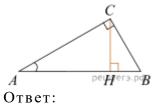

Найдите меньший угол данного треугольника. Ответ дайте в градусах.


42. Острый угол B прямоугольного треугольника равен 66° . Найдите угол между высотой CH и медианой CM, проведенными из вершины прямого угла. Ответ дайте в градусах.

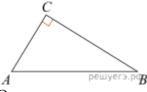

43. В прямоугольном треугольнике угол между высотой и медианой, проведенными из вершины прямого угла, равен 40°. Найдите больший из острых углов этого треугольника. Ответ дайте в градусах.


44. Острые углы прямоугольного треугольника равны 24° и 66°. Найдите угол между биссектрисой и медианой, проведенными из вершины прямого угла. Ответ дайте в градусах.

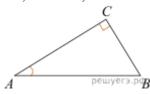

45. Угол между биссектрисой и медианой прямоугольного треугольника, проведенными из вершины прямого угла, равен 14°. Найдите меньший угол этого треугольника. Ответ дайте в градусах.


46. В треугольнике *ABC* угол *C* равен 90°, угол *A* равен 30°, $AB = 2\sqrt{3}$. Найдите высоту *CH*.

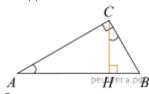
47. В треугольнике ABC угол C равен 90°, CH — высота, угол A равен 30°, AB = 2. Найдите AH.



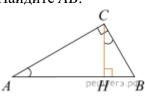
48. В треугольнике ABC угол C равен 90°, CH — высота, угол A равен 30°, AB = 4. Найдите BH.



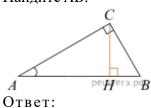
49. В треугольнике ABC угол C равен 90° . AB = 45, $\sin A = 0.6$. Найдите BC.


Ответ:

50. В треугольнике *ABC* угол *C* равен 90° , AB = 10, $AC = \sqrt{91}$. Найдите $\sin A$.


Ответ:

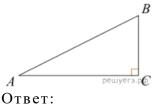
51. В треугольнике *ABC* угол *C* равен 90°, *CH* — высота, AH = 27, $\operatorname{tg} A = \frac{2}{3}$. Найдите *BH*.


Ответ:

52. В треугольнике ABC угол C равен 90°, CH — высота, BH = 12, $\sin A = \frac{2}{3}$. Найдите AB.

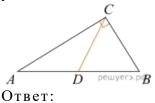
Ответ:

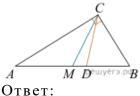
53. В треугольнике *ABC* угол *C* равен 90°, *CH* — высота, AH = 12, $\cos A = \frac{2}{3}$. Найдите *AB*.



54. Найдите площадь прямоугольного треугольника, если его катет и гипотенуза равны соответственно 6 и 10.

площадь треугольника: $S_{\Delta} = \frac{ah}{2}$

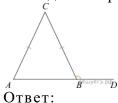

55. Площадь прямоугольного треугольника равна 24. Один из его катетов на 2 больше другого. Найдите меньший катет.


в прямоугольном треугольнике можно считать один катет основанием **а**, и другой катет – высотой **h**

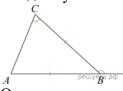
56. Площадь прямоугольного равнобедренного треугольника равна 18. Найдите длину его катета. Ответ:

57. В треугольнике ABC угол $C = 90^{\circ}$, угол $B = 87^{\circ}$, CD — медиана. Найдите угол CDA. Ответ дайте в градусах.

58. Острый угол прямоугольного треугольника равен 58°. Найдите угол между биссектрисой и медианой, проведенными из вершины прямого угла. Ответ дайте в градусах.


Равнобедренный треугольник

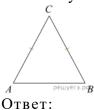
<u>59.</u> В треугольнике ABC угол C равен 118° , AC = BC. Найдите угол A. Ответ дайте в градусах.



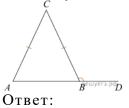
в равнобедренном треугольнике углы **при основании** равны

60. В треугольнике ABCAC = BC, угол C равен 52°. Найдите внешний угол CBD. Ответ дайте в градусах.

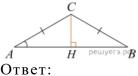
61. В треугольнике ABCAB = BC. Внешний угол при вершине B равен 138°. Найдите угол C. Ответ дайте в градусах.

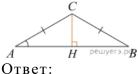

Ответ:

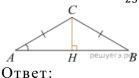
62. В треугольнике ABC угол A равен 38° , AC = BC. Найдите угол C. Ответ дайте в градусах.

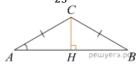


Ответ:

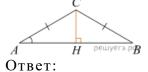

63. Больший угол равнобедренного треугольника равен 98°. Найдите меньший угол. Ответ дайте в градусах.


64. В треугольнике ABCAC = BC. Внешний угол при вершине B равен 122°. Найдите угол C. Ответ дайте в градусах.


<u>**65.**</u> В треугольнике ABCAC = BC = 8, $\cos A = 0.5$. Найдите AB.


66. В треугольнике ABCAC = BC, AB = 8, $\cos A = 0.5$. Найдите AC.

67. В треугольнике ABCAC = BC, AB = 9.6, $\sin A = \frac{7}{25}$. Найдите AC.

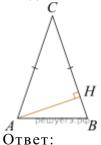


68. В треугольнике ABCAC = BC = 5, $\sin A = \frac{7}{25}$. Найдите AB.

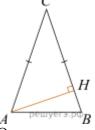
Ответ:

69. В треугольнике ABCAC = BC = 7, $tg A = \frac{33}{4\sqrt{33}}$. Найдите AB.

§1. Треугольники

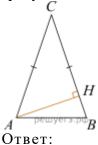


70. В треугольнике ABCAC = BC, AB = 10, $\angle BAH = 30^{\circ}$. Найдите BH.

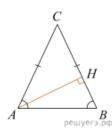


напротив угла в 30° лежит **катет**, который в два раза меньше **гипотенузы**

71. В треугольнике ABCAC = BC, высота AH равна 4, угол C равен 30°. Найдите AC.

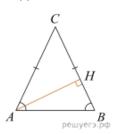


72. В треугольнике ABCAC = BC = 4, угол C равен 30°. Найдите высоту AH.

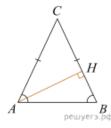


Ответ:

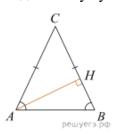
73. В остроугольном треугольнике ABC известно, что AC = BC = 6, высота AH равна 3. Найдите угол C. Ответ дайте в градусах.


<u>**74.**</u> В треугольнике ABCAC = BC, AH — высота, AB = 8, $\cos BAC = 0.5$. Найдите BH.

Ответ:


у одинаковых углов и косинусы одинаковые

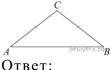
75. В треугольнике ABCAC = BC, AH — высота, AB = 7, $tg BAC = \frac{33}{4\sqrt{33}}$. Найдите BH.


Ответ:

76. В треугольнике ABCAC = BC, AH — высота, AB = 15, $tg BAC = \frac{4}{3}$. Найдите BH.

Ответ:

77. В треугольнике ABCAC = BC, высота AH равна 4, AB = 8. Найдите синус угла BAC.



Простая планиметрия

78. Угол при вершине, противолежащей основанию равнобедренного треугольника, равен 150°.

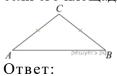
Боковая сторона треугольника равна 20. Найдите площадь этого треугольника.

$$S_{\Delta} = \frac{ah}{2}$$
 ИЛИ $S_{\Delta} = \frac{ab \sin \alpha}{2}$

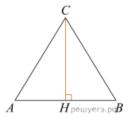
79. Боковая сторона равнобедренного треугольника равна 5, а основание равно 6. Найдите площадь этого треугольника.

Ответ:

80. Угол при вершине, противолежащей основанию равнобедренного треугольника, равен 30°. Боковая сторона треугольника равна 10. Найдите площадь этого треугольника.

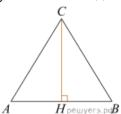

Ответ:

81. Угол при вершине, противолежащей основанию равнобедренного треугольника, равен 30°. Найдите боковую сторону треугольника, если его площадь равна 25.

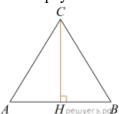


Ответ:

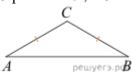
82. Угол при вершине, противолежащей основанию равнобедренного треугольника, равен 150°. Найдите боковую сторону треугольника, если его площадь равна 100.


<u>83.</u> В треугольнике *ABC* $AB=BC=AC=2\sqrt{3}$. Найдите высоту *CH*.

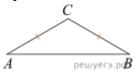
Ответ:


в равнобедренном (и в равностороннем) *Высота*, проведённая к основанию также является **медианой** и **биссектрисой**

84. В треугольнике $ABC\ AC = BC$, AB = 4, высота CH равна $2\sqrt{3}$. Найдите угол C. Ответ дайте в градусах.

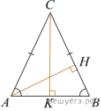

Ответ:

85. В равностороннем треугольнике ABC высота CH равна $2\sqrt{3}$. Найдите стороны этого треугольника.


Ответ:

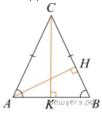
86. В треугольнике ABCAC = BC, угол C равен 120°, AC=2√3. Найдите AB.

Ответ:


87. В треугольнике ABCAC = BC, угол C равен 120°, $AB = 2\sqrt{3}$. Найдите AC.

Ответ:

<u>88.</u> В треугольнике ABC $AC = BC = 4\sqrt{15}$, $\sin BAC = 0.25$. Найдите высоту AH.



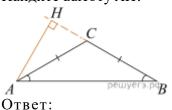
Ответ:

один и тот же угол может принадлежать **сразу двум** прямоугольным треугольникам

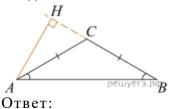
89. В треугольнике $ABC\ AC = BC$, AH — высота, AB = 5, $\sin BAC = \frac{7}{25}$. Найдите BH.

90. В треугольнике $ABC\ AC = BC$, AB = 5, $\cos BAC = \frac{7}{25}$. Найдите высоту AH.

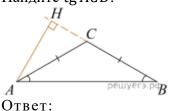
Ответ:


91. В треугольнике ABCAC = BC = 27, BH — высота, $\cos BAC = \frac{2}{3}$. Найдите BH. Ответ:

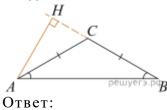
92. В треугольнике ABCAC = BC = 27, BH — высота, $\sin BAC = \frac{2}{3}$. Найдите BH. Ответ:


93. В треугольнике ABCAC = BC, AB = 8, $\sin BAC = 0.5$. Найдите высоту AH. Ответ:

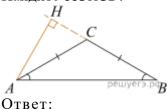
94. В треугольнике ABCAC = BC, высота AH равна 20, AB = 25. Найдите $\cos BAC$. Ответ:


95. В треугольнике ABC $AC = BC = 2\sqrt{3}$, угол C равен 120°. Найдите высоту AH.

96. В тупоугольном треугольнике ABC AC = BC = 8, высота AH равна 4. Найдите $\sin ACB$.



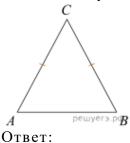
97. В тупоугольном треугольнике ABC AC = BC, высота AH равна 4, CH = 8. Найдите tg ACB.



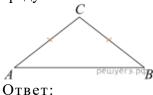
тангенсы и косинусы **смежных** углов отличаются только **знаком** (+ или –)

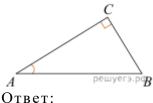
98. В тупоугольном треугольнике ABC AC = BC = 25, высота AH равна 20. Найдите $\cos ACB$.

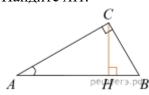
99. В тупоугольном треугольнике ABC AC = BC, высота AH равна 24, CH = 7. Найдите $\cos ACB$.



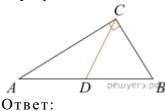
<u>5х5.рф</u>


Простая планиметрия

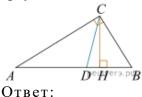

100. В треугольнике ABC известно, что AC = BC = 21, tg $\angle A = 2\sqrt{2}$. Найдите длину стороны AB.


101. Один угол равнобедренного треугольника на 90° больше другого. Найдите меньший угол. Ответ дайте в градусах.

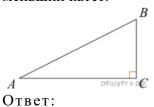
102. В треугольнике *ABC* угол *C* равен 90° , BC = 4, a $\sin A = 0.5$. Найдите *AB*.



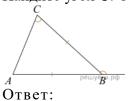
103. В треугольнике *ABC* угол *C* равен 90°, *CH* — высота, BC = 3, $\cos A = \frac{\sqrt{35}}{6}$. Найдите *AH*.

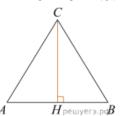

Ответ:

104. В треугольнике ABC угол ACB равен 90°, угол B равен 58°, CD — медиана. Найдите угол ACD. Ответ дайте в градусах.



105. В прямоугольном треугольнике угол между высотой и биссектрисой, проведенными из вершины прямого угла, равен 21°.

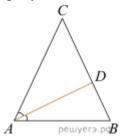

Найдите меньший угол данного треугольника. Ответ дайте в градусах.


106. Площадь прямоугольного треугольника равна 24. Один из его катетов на 2 больше другого. Найдите меньший катет.

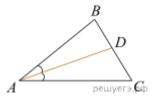
107. В треугольнике ABC AB = BC. Внешний угол при вершине B равен 138°. Найдите угол C. Ответ дайте в градусах.

108. В треугольнике *ABC* $AB=BC=AC=2\sqrt{3}$. Найдите высоту *CH*.

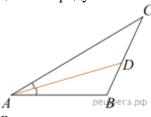
Ответ:


109. В треугольнике ABCAC = BC = 27, BH — высота, $\sin BAC = \frac{2}{3}$. Найдите BH. Ответ:

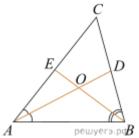
110. В треугольнике ABCAC = BC, высота AH равна 20, AB = 25. Найдите $\cos BAC$. Ответ:


Произвольный треугольник

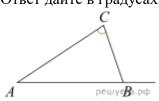
<u>111.</u> В треугольнике ABCAD — биссектриса, угол C равен 50° , угол CAD равен 28° . Найдите угол B. Ответ дайте в градусах.


Ответ:

112. В треугольнике ABC проведена биссектриса AD. Найдите угол ABD, если угол BAD равен 29° и угол ACB равен 55°.

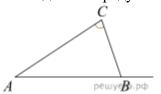

Ответ:

113. В треугольнике ABCAD — биссектриса, угол C равен 30°, угол BAD равен 22°. Найдите угол ADB. Ответ дайте в градусах.

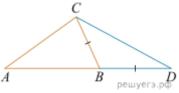

Ответ:

114. В треугольнике ABC угол C равен 58° , AD и BE — биссектрисы, пересекающиеся в точке O. Найдите угол AOB. Ответ дайте в градусах.

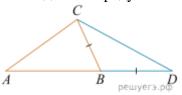
Ответ:


115. В треугольнике ABC угол A равен 40°, внешний угол при вершине B равен 102°. Найдите угол C. Ответ дайте в градусах.

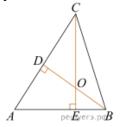
Ответ:


сумма смежных углов всегда **180**°

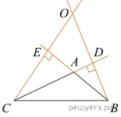
116. В треугольнике ABC угол A равен 14°, внешний угол при вершине B равен 91°. Найдите угол C. Ответ дайте в градусах.


Ответ:

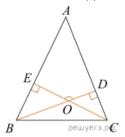
117. В треугольнике ABC угол A равен 44°, угол C равен 62°. На продолжении стороны AB за точку B отложен отрезок BD, равный стороне BC. Найдите угол D треугольника BCD. Ответ дайте в градусах.


Ответ:

118. В треугольнике ABC угол A равен 55°, угол C равен 63°. На продолжении стороны AB за точку B отложен отрезок BD, равный стороне BC. Найдите угол D треугольника BCD. Ответ дайте в градусах.



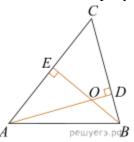
119. В остроугольном треугольнике ABC угол A равен 65°. BD и CE — высоты, пересекающиеся в точке O. Найдите угол DOE. Ответ дайте в градусах.


Ответ:

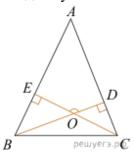
120. В треугольнике ABC угол A равен 135°. Продолжения высот BD и CE пересекаются в точке O. Найдите угол DOE. Ответ дайте в градусах.


Ответ:

121. В треугольнике ABC угол A равен 46°, углы B и C — острые, высоты BD и CE пересекаются в точке O. Найдите угол DOE. Ответ дайте в градусах.


Ответ:

122. В треугольнике ABC угол A равен 41°, а углы B и C — острые, BD и CE — высоты, пересекающиеся в точке O. Найдите угол DOE.


Ответ:

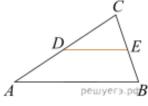
123. Два угла треугольника равны 58° и 72°. Найдите тупой угол, который образуют высоты треугольника, выходящие из вершин этих углов. Ответ дайте в градусах.

Ответ:

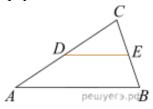
124. В треугольнике ABC угол A равен 43 градусам, углы B и C — острые, высоты BD и CE пересекаются в точке O. Найдите угол DOE.

Ответ дайте в градусах.

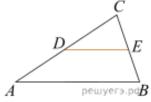
Ответ:


один и тот же угол может иметь отношение к **разным** треугольникам

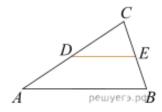
125. В треугольнике ABC угол A равен 60° , угол B равен 82° . AD, BE и CF — высоты, пересекающиеся в точке O. Найдите угол AOF.


126. Площадь треугольника ABC равна 40, DE — средняя линия, параллельная стороне AB. Найдите площадь треугольника CDE.

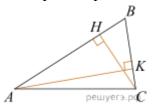
Ответ:


все три средние линии треугольника делят его на четыре **равных** треугольника

127. В треугольнике ABC отрезок DE — средняя линия. Площадь треугольника CDE равна 38. Найдите площадь треугольника ABC.

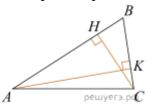

Ответ:

128. В треугольнике *ABC* отрезок *DE* — средняя линия. Площадь треугольника *CDE* равна 128. Найдите площадь трапеции *ADEB*.

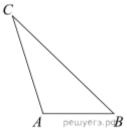

Ответ:

129. Площадь треугольника ABC равна 10, DE — средняя линия, параллельная стороне AB. Найдите площадь трапеции ABED.

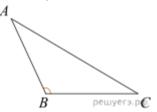
Ответ:


130. У треугольника со сторонами 9 и 6 проведены высоты к этим сторонам. Высота, проведенная к первой стороне, равна 4. Чему равна высота, проведенная ко второй стороне?

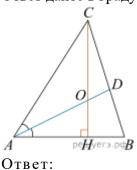
Ответ:


площадь треугольника - полупроизведение основания и высоты, проведённой **именно к этому** основанию

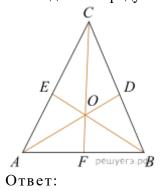
131. У треугольника со сторонами 20 и 5 проведены высоты к этим сторонам. Высота, проведенная к первой стороне, равна 6. Чему равна высота, проведенная ко второй стороне?

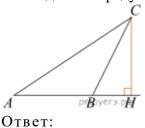

Ответ:

132. Найдите площадь треугольника, две стороны которого равны 8 и 12, а угол между ними равен 30°.

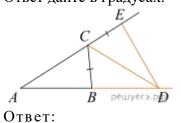

Ответ:

133. В треугольнике ABC угол B — тупой, AB = 5, BC = 6. Найдите величину угла, противолежащего стороне AC, если площадь треугольника равна 7,5. Ответ дайте в градусах.

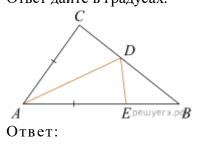



134. В треугольнике $ABC\ CH$ — высота, AD — биссектриса, O — точка пересечения прямых CH и AD, угол BAD равен 26°. Найдите угол AOC. Ответ дайте в градусах.

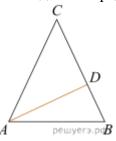
135. В треугольнике ABC угол A равен 60°, угол B равен 82°. AD, BE и CF — биссектрисы, пересекающиеся в точке O. Найдите угол AOF. Ответ дайте в градусах.



136. В треугольнике ABC угол A равен 30°, угол B — тупой, CH — высота, угол BCH равен 22°. Найдите угол ACB. Ответ дайте в градусах.



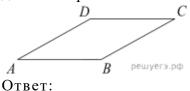
137. Углы треугольника относятся как 2:3:4. Найдите меньший из них. Ответ дайте в градусах. Ответ:


138. В треугольнике ABC угол A равен 30° , угол B равен 86° , CD — биссектриса внешнего угла при вершине C, причем точка D лежит на прямой AB. На продолжении стороны AC за точку C выбрана такая точка E, что CE = CB. Найдите угол BDE. Ответ дайте в градусах.

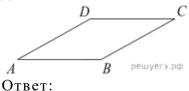
139. В треугольнике ABC угол B равен 45°, угол C равен 85°, AD — биссектриса, E — такая точка на AB, что AE = AC. Найдите угол BDE. Ответ дайте в градусах.

140. В треугольнике ABC проведена биссектриса AD и AB = AD = CD. Найдите меньший угол треугольника ABC. Ответ дайте в градусах.

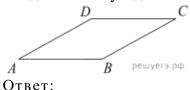
Ответ:


если непонятно как найти то, что нужно — сначала находим то, что можем найти в данный момент и на основе этой новой информации уже ищем то, что от нас хотят

§2. ЧЕТЫРЁХУГОЛЬНИКИ

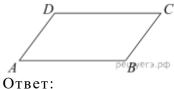

Параллелограмм

<u>141.</u> Найдите площадь ромба, если его диагонали равны 4 и 12.

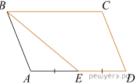


$$S_{\text{РОМБА}} = \frac{\text{диагональ}1 \cdot \text{диагональ}2}{2}$$

142. Площадь ромба равна 18. Одна из его диагоналей равна 12. Найдите другую диагональ.



143. Площадь ромба равна 6. Одна из его диагоналей в 3 раза больше другой. Найдите меньшую диагональ.


 $S_{\Pi APAJ-MA} = OCHOBAHИE \cdot BЫСОТА$ любое основание на проведённую к нему высоту

144. Площадь параллелограмма равна 40, две его стороны равны 5 и 10. Найдите большую высоту этого параллелограмма.

145. Стороны параллелограмма равны 9 и 15. Высота, опущенная на первую сторону, равна 10. Найдите высоту, опущенную на вторую сторону параллелограмма.

146. Площадь параллелограмма ABCD равна 24. Точка E — середина стороны AD. Найдите площадь трапеции BCDE.

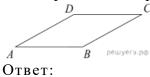
Ответ:

иногда можно обойтись вообще без формул

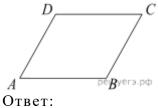
- **147.** Площадь параллелограмма ABCD равна 176. Точка E середина стороны CD. Найдите площадь треугольника ADE. Ответ:
- **148.** Площадь параллелограмма ABCD равна 189. Точка E середина стороны AD. Найдите площадь трапеции AECB. Ответ:

$$S_{\Pi P M - K A} = ДЛИНА \cdot ШИРИНА$$

149. Площадь прямоугольника равна 18. Найдите его большую сторону, если она на 3 больше меньшей стороны.


Ответ:

150. Найдите площадь квадрата, если его диагональ равна 1.


Ответ:

151. Найдите площадь ромба, если его высота равна 2, а острый угол 30° .

<u>152.</u> Периметр параллелограмма равен 46. Одна сторона параллелограмма на 3 больше другой. Найдите меньшую сторону параллелограмма.

<u>периметр</u> - это сумма всех сторон любого многоугольника

153. Две стороны параллелограмма относятся как 3:4, а периметр его равен 70. Найдите большую сторону параллелограмма.

Ответ:

154. Найдите периметр прямоугольника, если его площадь равна 18, а отношение соседних сторон равно 1:2.

Ответ:

155. Периметр прямоугольника равен 42, а площадь 98. Найдите большую сторону прямоугольника.

Ответ:

156. Периметр прямоугольника равен 34, а площадь равна 60. Найдите диагональ этого прямоугольника.

Ответ:

157. Периметр прямоугольника равен 28, а диагональ равна 10. Найдите площадь этого прямоугольника.

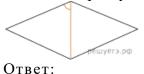
Ответ:

<u>158.</u> В ромбе *ABCD* угол *ACD* равен 43°. Найдите угол *ABC*.

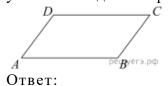
Ответ дайте в градусах.

Ответ:

сумма соседних углов параллелограмма всегда 180°, а противолежащие – равны


159. В ромбе ABCD угол ABC равен 122°. Найдите угол ACD.

Ответ дайте в градусах.


Ответ:

160. Угол между стороной и диагональю ромба равен 54° .

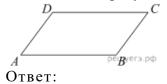
Найдите острый угол ромба.



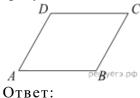
161. Сумма двух углов параллелограмма равна 100°. Найдите один из оставшихся углов. Ответ дайте в градусах.

162. Диагональ параллелограмма образует с двумя его сторонами углы 26° и 34°. Найдите больший угол параллелограмма.

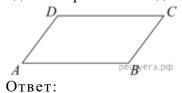
Ответ дайте в градусах.


Ответ:

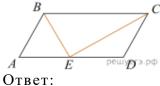
163. Диагональ прямоугольника вдвое больше одной из его сторон. Найдите больший из углов, который образует диагональ со сторонами прямоугольника? Ответ выразите в градусах.

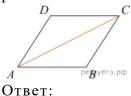


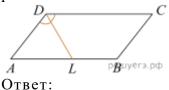
164. Один угол параллелограмма больше другого на 70°. Найдите больший угол. Ответ дайте в градусах.

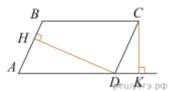


иногда лучше составить уравнение, приняв какую-то величину за X


165. Найдите больший угол параллелограмма, если два его угла относятся как 3:7. Ответ дайте в градусах.

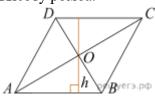

166. Найдите угол между биссектрисами углов параллелограмма, прилежащих к одной стороне. Ответ дайте в градусах.


167. Точка пересечения биссектрис двух углов параллелограмма, прилежащих к одной стороне, принадлежит противоположной стороне. Меньшая сторона параллелограмма равна 5. Найдите его большую сторону.

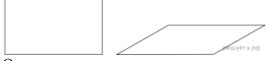

168. Найдите большую диагональ ромба, сторона которого равна $\sqrt{3}$, а острый угол равен 60°.

169. Биссектриса тупого угла параллелограмма делит противоположную сторону в отношении 4:3, считая от вершины острого угла. Найдите большую сторону параллелограмма, если его периметр равен 88.

170. В параллелограмме ABCDAB = 3, AD = 21, $\sin A = \frac{6}{7}$. Найдите большую высоту параллелограмма.

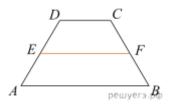

Ответ:

171. Найдите высоту ромба, сторона которого равна $\sqrt{3}$, а острый угол равен 60° .


Ответ:

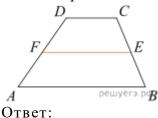
172. Диагонали ромба относятся как 3:4. Периметр ромба равен 200. Найдите высоту ромба.

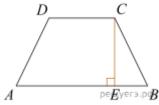
Ответ:


173. Параллелограмм и прямоугольник имеют одинаковые стороны. Найдите острый угол параллелограмма, если его площадь равна половине площади прямоугольника. Ответ дайте в градусах.

5×5

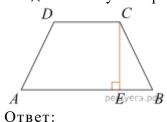
Трапеция


<u>174.</u> Средняя линия трапеции равна 28, а меньшее основание равно 18. Найдите большее основание трапеции.

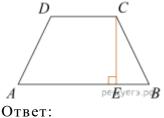

Ответ:

<u>средняя линия</u> - это полусумма оснований: $m=rac{a+b}{2}$

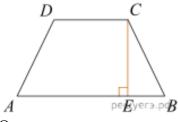
175. Периметр трапеции равен 50, а сумма двух противоположных непараллельных сторон равна 20. Найдите среднюю линию трапеции.


<u>176</u>. Основания равнобедренной трапеции равны 17 и 87. Высота трапеции равна 14. Найдите тангенс острого угла.

Ответ:

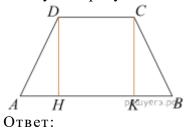

sin = противолежащий / гипотенуза cos = прилежащий / гипотенуза tg = противолежащий / прилежащий

177. Основания равнобедренной трапеции равны 43 и 73. Косинус острого угла трапеции равен 5/7. Найдите боковую сторону.

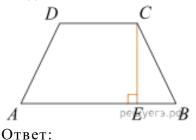


равнобедренной трапеции равно 23. Высота трапеции равна 39. Тангенс острого угла равен 13/8. Найдите большее основание.

178. Меньшее основание

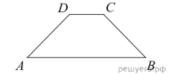


179. Основания равнобедренной трапеции равны 51 и 65. Боковые стороны равны 25. Найдите синус острого угла трапеции.

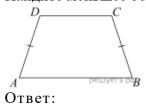


Ответ:

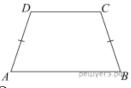
180. Основания равнобедренной трапеции равны 6 и 12. Синус острого угла трапеции равен 0,8. Найдите боковую сторону.



181. Большее основание равнобедренной трапеции равно 34. Боковая сторона равна 14. Синус острого угла равен $\frac{2\sqrt{10}}{7}$. Найдите меньшее основание.

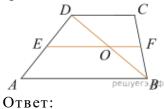


182. Основания равнобедренной трапеции равны 15 и 9, один из углов равен 45°. Найдите высоту трапеции.

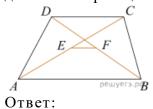


Ответ:

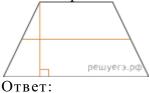
183. В равнобедренной трапеции большее основание равно 25, боковая сторона равна 10, угол между ними 60°. Найдите меньшее основание.



184. В равнобедренной трапеции основания равны 12 и 27, острый угол равен 60°. Найдите ее периметр.

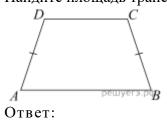

Ответ:

185. Основания трапеции равны 4 и 10. Найдите больший из отрезков, на которые делит среднюю линию этой трапеции одна из ее диагоналей.

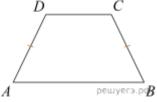


средняя линия **треугольника** равна <u>половине основания</u>

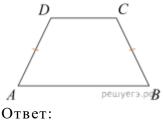
186. Основания трапеции равны 3 и 2. Найдите отрезок, соединяющий середины диагоналей трапеции.


187. Высота трапеции равна 5, площадь равна 75. Найдите среднюю линию трапеции.

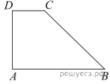
 $S_{\text{ТРАПЕШИИ}} = m \cdot h$


188. Основания равнобедренной трапеции равны 15 и 20, а высота 10. Найдите площадь трапеции. Ответ:

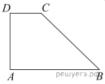
189. Основания равнобедренной трапеции равны 14 и 26, а ее боковые стороны равны 10. Найдите площадь трапеции.


$$S_{\text{ТРАПЕЦИИ}} = \frac{a+b}{2} \cdot h$$

190. Основания равнобедренной трапеции равны 21 и 39, а ее периметр равен 90. Найдите площадь трапеции.


Ответ:

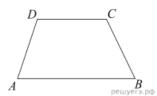
191. Основания равнобедренной трапеции равны 7 и 13, а ее площадь равна 40. Найдите боковую сторону трапеции.



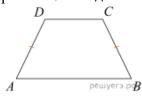
192. Найдите площадь прямоугольной трапеции, основания которой равны 6 и 2, большая боковая сторона составляет с основанием угол 45°.

Ответ:

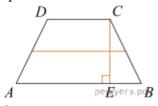
193. Основания прямоугольной трапеции равны 12 и 4. Ее площадь равна 64. Найдите острый угол этой трапеции. Ответ дайте в градусах.


Ответ:

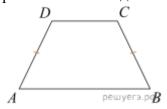
194. Основания трапеции равны 18 и 6, боковая сторона, равная 7, образует с одним из оснований трапеции угол 150°. Найдите площадь трапеции.


Ответ:

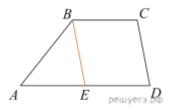
195. Основания трапеции равны 27 и 9, боковая сторона равна 8. Площадь трапеции равна 72. Найдите острый угол трапеции, прилежащий к данной боковой стороне. Ответ выразите в градусах.


Ответ:

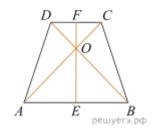
196. Основания равнобедренной трапеции равны 7 и 13, а ее площадь равна 40. Найдите периметр трапеции.


Ответ:

197. Перпендикуляр, опущенный из вершины тупого угла на большее основание равнобедренной трапеции, делит его на части, имеющие длины 10 и 4. Найдите среднюю линию этой трапеции.


Ответ:

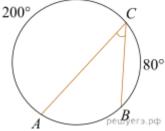
198. Чему равен больший угол равнобедренной трапеции, если известно, что разность противолежащих углов равна 50°? Ответ дайте в градусах.


Ответ:

199. Прямая, проведенная параллельно боковой стороне трапеции через конец меньшего основания, равного 4, отсекает треугольник, периметр которого равен 15. Найдите периметр трапеции.

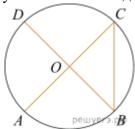
Ответ:

200. В равнобедренной трапеции диагонали перпендикулярны. Высота трапеции равна 12. Найдите ее среднюю линию.

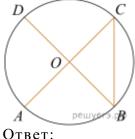


§3. ОКРУЖНОСТИ

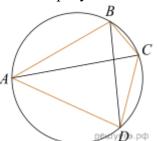
Центральные и вписанные углы


201. Треугольник ABC вписан в окружность с центром O. Найдите угол BOC, если угол BAC равен 32° . Ответ:

202. Дуга окружности AC, не содержащая точки B, составляет 200°. А дуга окружности BC, не содержащая точки A, составляет 80°. Найдите вписанный угол ACB. Ответ дайте в градусах.


Ответ:

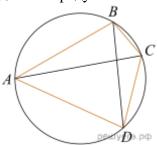
203. В окружности с центром O отрезки AC и BD — диаметры. Вписанный угол ACB равен 38° . Найдите центральный угол AOD. Ответ дайте в градусах.



Ответ:

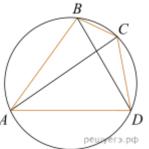
204. В окружности с центром O отрезки AC и BD — диаметры. Центральный угол AOD равен 110° . Найдите вписанный угол ACB. Ответ дайте в градусах.

205. Четырёхугольник ABCD вписан в окружность. Угол ABD равен 61°, угол CAD равен 37°. Найдите угол ABC. Ответ дайте в градусах.



Ответ:

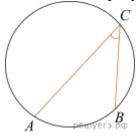
центральный угол равен градусной мере дуги, на которую он опирается


вписанный угол равен **половине** дуги, на которую он опирается

206. Четырёхугольник ABCD вписан в окружность. Угол ABC равен 102° , угол CAD равен 46° . Найдите угол ABD. Ответ дайте в градусах.

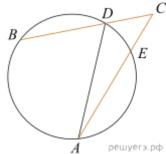
Ответ:

207. Угол ABD равен 53°. Угол BCA равен 38°. Найдите вписанный угол BCD. Ответ дайте в градусах.

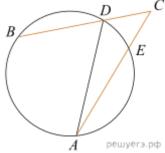


<u>5х5.рф</u>

Простая планиметрия



208. Найдите вписанный угол, опирающийся на дугу, которая составляет 1/5 окружности. Ответ дайте в градусах.


Ответ:

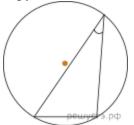
- **209.** На окружности по разные стороны от диаметра MN взяты точки K и P. Известно, что $\angle MNP = 36^{\circ}$. Найдите $\angle PKN$. Ответ дайте в градусах. Ответ:
- **210.** Угол ACB равен 42°. Градусная величина дуги AB окружности, не содержащей точек D и E, равна 124°. Найдите угол DAE. Ответ дайте в градусах.

Ответ:

211. Найдите угол ACB, если вписанные углы ADB и DAE опираются на дуги окружности, градусные величины которых равны соответственно 118° и 38° . Ответ дайте в градусах.

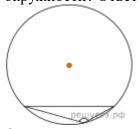
Ответ:

212. Центральный угол на 36° больше острого вписанного угла, опирающегося на ту же дугу окружности. Найдите вписанный угол. Ответ дайте в градусах.


Ответ:

если вписанный угол X, то центральный 2X

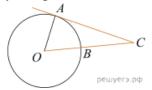
213. Найдите центральный угол AOB, если он на 15° больше вписанного угла ACB, опирающегося на ту же дугу. Ответ дайте в градусах.


Ответ:

214. Чему равен острый вписанный угол, опирающийся на хорду, равную радиусу окружности? Ответ дайте в градусах.

Ответ:

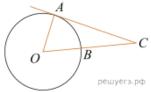
215. Чему равен тупой вписанный угол, опирающийся на хорду, равную радиусу окружности? Ответ дайте в градусах.


Ответ:

216. Угол между двумя соседними сторонами правильного многоугольника, равен 160°. Найдите число вершин многоугольника.

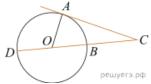
Касательная, хорда, секущая

217. Найдите угол ACO, если его сторона CA касается окружности, O — центр окружности, сторона CO пересекает окружность в точке B, дуга AB окружности, заключённая внутри этого угла, равна 64° . Ответ дайте в градусах.



Ответ:

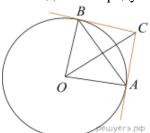
радиус, проведённый к точке касания, образует с касательной **прямой угол** (90°)


218. Угол ACO равен 28° , где O — центр окружности. Его сторона CA касается окружности. Найдите величину меньшей дуги AB окружности, заключенной внутри этого угла.

Ответ дайте в градусах.

Ответ:

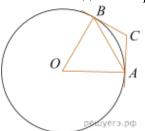
219. Угол ACO равен 24°. Его сторона CA касается окружности с центром в точке O. Сторона CO пересекает окружность в точках B и D. Найдите градусную меру дуги AD окружности, заключенной внугри этого угла. Ответ дайте в градусах.


Ответ:

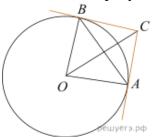
220. Найдите угол ACO, если его сторона CA касается окружности, O — центр окружности, сторона CO пересекает окружность в точках B и D, а дуга AD окружности, заключенная внутри этого угла, равна 116° . Ответ дайте в градусах.

Ответ:

221. Через концы A, B дуги окружности в 62° проведены касательные AC и BC. Найдите угол ACB.


Ответ дайте в градусах.

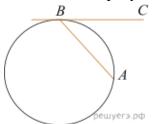
Ответ:


сумма углов выпуклого четырёхугольника **всегда 360**°

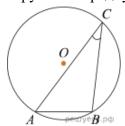
222. Через концы A и B дуги окружности с центром O проведены касательные AC и BC. Угол CAB равен 32° . Найдите угол AOB. Ответ дайте в градусах.

Ответ:

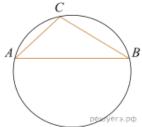
223. Касательные CA и CB к окружности образуют угол ACB, равный 122° . Найдите величину меньшей дуги AB, стягиваемой точками касания. Ответ дайте в градусах.


Ответ:

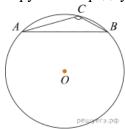
224. Через концы A и B дуги окружности в проведены касательные AC и BC. Угол $C = 44^{\circ}$. Найдите большую дугу AB. Ответ дайте в градусах. Ответ:



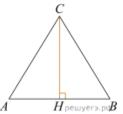
225. Хорда AB стягивает дугу окружности в 92°. Найдите угол ABC между этой хордой и касательной к окружности, проведенной через точку B. Ответ дайте в градусах.


Ответ:

226. Найдите хорду, на которую опирается угол 30° , вписанный в окружность радиуса 3.

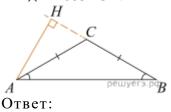

Ответ:

227. Хорда AB делит окружность на две части, градусные величины которых относятся как 5:7. Под каким углом видна эта хорда из точки C, принадлежащей меньшей дуге окружности? Ответ дайте в градусах.

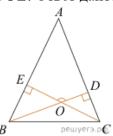


Ответ:

228. Найдите хорду, на которую опирается угол 120° , вписанный в окружность радиуса $\sqrt{3}$.

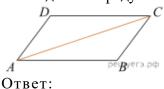


229. В равностороннем треугольнике *АВС* высота *СН* равна $2\sqrt{3}$. Найдите стороны этого треугольника.



Ответ:

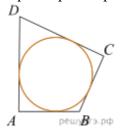
230. В тупоугольном треугольнике ABC AC = BC = 25, высота AH равна 20. Найдите $\cos ACB$.


231. В треугольнике ABC угол A равен 46°, углы B и C — острые, высоты BD и CE пересекаются в точке O. Найдите угол DOE. Ответ дайте в градусах.

Ответ:

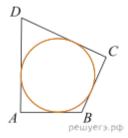
232. Диагональ параллелограмма образует с двумя его сторонами углы 26° и 34°. Найдите больший угол параллелограмма.

Ответ дайте в градусах.



233. Основания равнобедренной трапеции равны 15 и 20, а высота 10. Найдите площадь трапеции. Ответ:

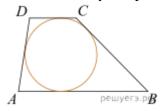
Вписанная окружность


234. В четырехугольник ABCD вписана окружность, AB = 10, CD = 16. Найдите периметр четырехугольника ABCD.

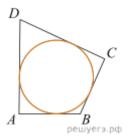
Ответ:

если в четырёхугольник ABCD можно вписать окружность, то **AB+CD=AD+BC**

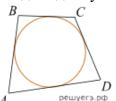
235. В четырехугольник ABCD вписана окружность, AB = 10, BC = 11 и CD = 15. Найдите четвертую сторону четырехугольника.


Ответ:

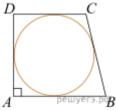
236. Боковые стороны трапеции, описанной около окружности, равны 3 и 5. Найдите среднюю линию трапеции.


Ответ:

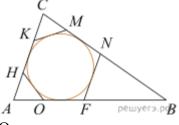
237. Около окружности описана трапеция, периметр которой равен 40. Найдите длину её средней линии.


Ответ:

238. Периметр четырехугольника, описанного около окружности, равен 24, две его стороны равны 5 и 6. Найдите большую из оставшихся сторон.


Ответ:

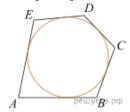
239. В четырёхугольник ABCD, периметр которого равен 54, вписана окружность, AB = 18. Найдите длину стороны CD.


Ответ:

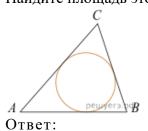
240. Периметр прямоугольной трапеции, описанной около окружности, равен 22, ее большая боковая сторона равна 7. Найдите радиус окружности.

Ответ:

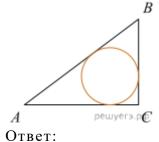
241. К окружности, вписанной в треугольник *ABC*, проведены три касательные. Периметры отсеченных треугольников равны 6, 8, 10. Найдите периметр данного треугольника.



<u>242.</u> Площадь треугольника равна 24, а радиус вписанной окружности равен 2. Найдите периметр этого треугольника.

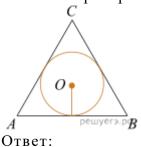

 $S_{ ext{многоугольника}} = p \cdot r$ p - полупериметр (половина периметра) r - радиус вписанной окружности

243. Около окружности, радиус которой равен 3, описан многоугольник, периметр которого равен 20. Найдите его площадь.

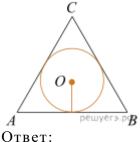


Ответ:

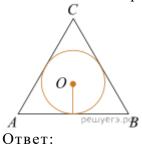
244. Периметр треугольника равен 12, а радиус вписанной окружности равен 1. Найдите площадь этого треугольника.



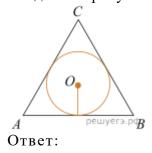
245. В треугольнике ABC стороны AC = 4, BC = 3, угол C равен 90° . Найдите радиус вписанной окружности.


246. В треугольнике ABC известно, что AC = 36, BC = 15, а угол C равен 90° . Найдите радиус вписанной в этот треугольник окружности. Ответ:

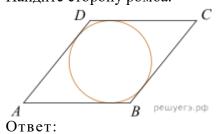
<u>247.</u> Найдите радиус окружности, вписанной в правильный треугольник, высота которого равна 6.



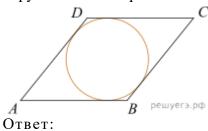
центр правильного треугольника является точкой пересечения медиан и делит каждую из них в отношении 2:1

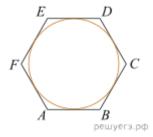

248. Радиус окружности, вписанной в правильный треугольник, равен 6. Найдите высоту этого треугольника.

249. Сторона правильного треугольника равна √3. Найдите радиус окружности, вписанной в этот треугольник.

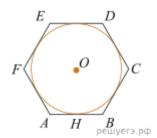


250. Радиус окружности, вписанной в правильный треугольник, равен $\frac{\sqrt{3}}{6}$. Найдите сторону этого треугольника.

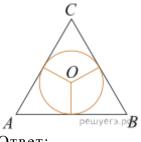



<u>251.</u> Острый угол ромба равен 30°. Радиус вписанной в этот ромб окружности равен 2. Найдите сторону ромба.

252. Сторона ромба равна 1, острый угол равен 30°. Найдите радиус вписанной окружности этого ромба.



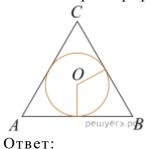
253. Найдите радиус окружности, вписанной в правильный шестиугольник со стороной $\sqrt{3}$.


Ответ:

254. Найдите сторону правильного шестиугольника, описанного около окружности, радиус которой равен $\sqrt{3}$.

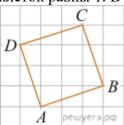
Ответ:

255. Боковые стороны равнобедренного треугольника равны 5, основание равно 6. Найдите радиус вписанной окружности.



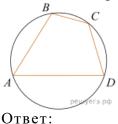
Ответ:

если из одной точки к окружности проведены две касательные, то их отрезки от этой точки до точек касания равны

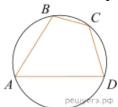

256. Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторон на два отрезка, длины которых равны 5 и 3, считая от вершины, противолежащей основанию.

Найдите периметр треугольника.

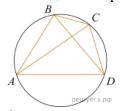
257. Катеты равнобедренного прямоугольного треугольника равны 2 + $\sqrt{2}$. Найдите радиус окружности, вписанной в этот треугольник. Ответ:


258. Найдите радиус r окружности, вписанной в четырехугольник АВСО. Считайте, что стороны квадратных клеток равны 1. В ответе укажите $r\sqrt{10}$.

5×5

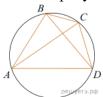

Описанная окружность

259. Угол A четырехугольника ABCD, вписанного в окружность, равен 58° . Найдите угол C этого четырехугольника. Ответ дайте в градусах.


у вписанного четырёхугольника сумма противолежащих углов всегда 180°

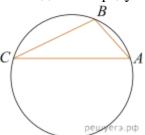
260. Два угла вписанного в окружность четырехугольника равны 82° и 58°. Найдите больший из оставшихся углов. Ответ дайте в градусах.

Ответ:


261. Четырехугольник ABCD вписан в окружность. Угол ABD равен 75°, угол CAD равен 35°. Найдите угол ABC. Ответ дайте в градусах.

Ответ:

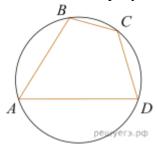
если два вписанных угла опираются на одну и ту же дугу, то они **равны**


262. Четырехугольник ABCD вписан в окружность. Угол ABC равен 110°, угол ABD равен 70°. Найдите угол CAD. Ответ дайте в градусах.

Ответ:

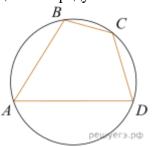
<u>263.</u> Точки A, B, C, расположенные на окружности, делят ее на три дуги, градусные величины которых относятся как 1:3:5. Найдите больший угол треугольника ABC.

Ответ дайте в градусах.

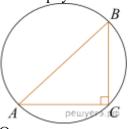


Ответ:

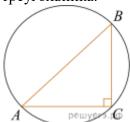
вписанный угол равен **половине** градусной меры дуги, на которую он опирается


264. Стороны четырехугольника *ABCD AB*, *BC*, *CD* и *AD* стягивают дуги описанной окружности, градусные величины которых равны соответственно 95°, 49°, 71°, 145°. Найдите угол *B* этого четырехугольника.

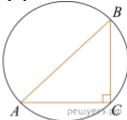
Ответ дайте в градусах.


Ответ:

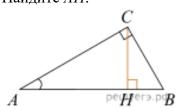
265. Точки A, B, C, D, расположенные на окружности, делят эту окружность на четыре дуги AB, BC, CD и AD, градусные величины которых относятся соответственно как 4:2:3:6. Найдите угол A четырехугольника ABCD. Ответ дайте в градусах.



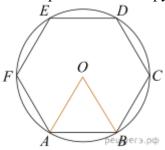
<u>266.</u> Гипотенуза прямоугольного треугольника равна 12. Найдите радиус описанной окружности этого треугольника.


Ответ:

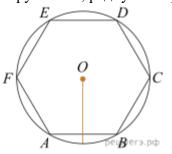
267. Радиус окружности, описанной около прямоугольного треугольника, равен 4. Найдите гипотенузу этого треугольника.


Ответ:

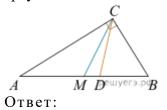
268. В треугольнике ABCAC = 4, BC = 3, угол C равен 90°. Найдите радиус описанной окружности этого треугольника.


Ответ:

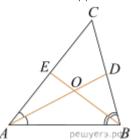
269. В треугольнике *ABC* угол *C* равен 90°, *CH* — высота, BC = 3, $\cos A = \frac{\sqrt{35}}{6}$. Найдите *AH*.


Ответ:

270. Периметр правильного шестиугольника равен 72. Найдите диаметр описанной окружности.

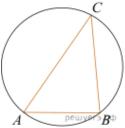

Ответ:

271. Чему равна сторона правильного шестиугольника, вписанного в окружность, радиус которой равен 6?

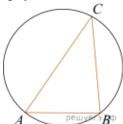


Ответ:

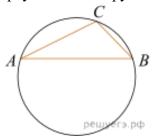
272. Угол между биссектрисой и медианой прямоугольного треугольника, проведенными из вершины прямого угла, равен 14°. Найдите меньший угол этого треугольника. Ответ дайте в градусах.



273. В треугольнике ABC угол C равен 58° , AD и BE — биссектрисы, пересекающиеся в точке O. Найдите угол AOB. Ответ дайте в градусах.


274. Сторона AB треугольника ABC равна 1. Противолежащий ей угол C равен 30°. Найдите радиус окружности, описанной около этого треугольника.

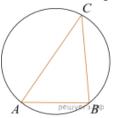
Ответ:


$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2R$$

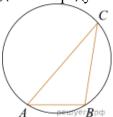
275. Угол C треугольника ABC, вписанного в окружность радиуса 3, равен 30° . Найдите сторону AB этого треугольника.


Ответ:

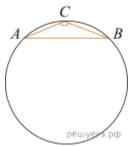
276. В треугольнике ABC сторона AB равна $2\sqrt{3}$, угол C равен 120° . Найдите радиус описанной около этого треугольника окружности.


Ответ:

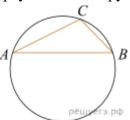
277. Сторона AB треугольника ABC с тупым углом C равна радиусу описанной около него окружности. Найдите угол C. Ответ дайте в градусах.


Ответ:

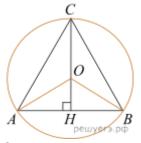
278. Одна сторона треугольника равна √2, радиус описанной окружности равен 1. Найдите острый угол треугольника, противолежащий этой стороне. Ответ дайте в градусах.


Ответ:

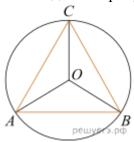
279. Одна сторона треугольника равна радиусу описанной окружности. Найдите острый угол треугольника, противолежащий этой стороне. Ответ дайте в градусах.


Ответ:

280. Сторона AB треугольника ABC равна 1. Противолежащий ей угол C равен 150°. Найдите радиус окружности, описанной около этого треугольника.


Ответ:

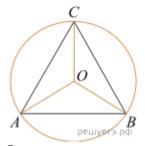
281. В треугольнике ABC сторона AB равна $3\sqrt{2}$, угол C равен 135° . Найдите радиус описанной около этого треугольника окружности.



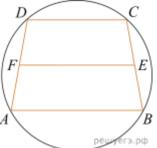
282. Высота правильного треугольника равна 3. Найдите радиус окружности, описанной около этого треугольника.

Ответ:

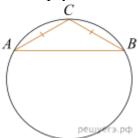
283. Радиус окружности, описанной около правильного треугольника, равен $\sqrt{3}$. Найдите сторону этого треугольника.


Ответ:

284. Радиус окружности, описанной около правильного треугольника, равен 3. Найдите высоту этого треугольника.


Ответ:

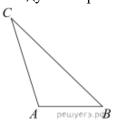
285. Сторона правильного треугольника равна √3. Найдите радиус окружности, описанной около этого треугольника.


Ответ:

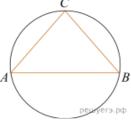
286. Около трапеции описана окружность. Периметр трапеции равен 22, средняя линия равна 5. Найдите боковую сторону трапеции.


Ответ:

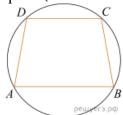
287. Боковая сторона равнобедренного треугольника равна 1, угол при вершине, противолежащей основанию, равен 120°. Найдите диаметр описанной окружности этого треугольника.


Ответ:

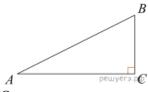
288. Боковая сторона равнобедренной трапеции равна ее меньшему основанию, угол при основании равен 60°, большее основание равно 12. Найдите радиус описанной окружности этой трапеции.


Ответ:

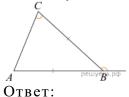
289. Найдите площадь треугольника, две стороны которого равны 8 и 12, а угол между ними равен 30°.



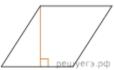
290. Боковые стороны равнобедренного треугольника равны 40, основание равно 48. Найдите радиус описанной окружности этого треугольника.


Ответ:

- **291.** Угол между двумя соседними сторонами правильного многоугольника, вписанного в окружность, равен 108°. Найдите число вершин многоугольника. Ответ:
- **292.** Основания равнобедренной трапеции равны 8 и 6. Радиус описанной окружности равен 5. Центр окружности лежит внутри трапеции. Найдите высоту трапеции.


Ответ:

293. Площадь прямоугольного треугольника равна 24. Один из его катетов на 2 больше другого. Найдите меньший катет.

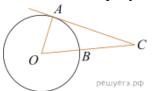


Ответ:

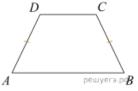
294. В треугольнике ABCAB = BC. Внешний угол при вершине B равен 138°. Найдите угол C. Ответ дайте в градусах.

295. Найдите высоту ромба, сторона которого равна $\sqrt{3}$, а острый угол равен 60°.

Ответ:


296. Угол между стороной и диагональю ромба равен 54°. Найдите острый угол ромба.

Ответ:


297. Угол ACO равен 28° , где O — центр окружности. Его сторона CA касается окружности. Найдите величину меньшей дуги AB окружности, заключенной внутри этого угла.

Ответ дайте в градусах.

Ответ:

298. Чему равен больший угол равнобедренной трапеции, если известно, что разность противолежащих углов равна 50°? Ответ дайте в градусах.

Ответ:

299. На окружности по разные стороны от диаметра MN взяты точки K и P. Известно, что $\angle MNP = 36^{\circ}$. Найдите $\angle PKN$. Ответ дайте в градусах. Ответ:

300. Диагональ параллелограмма образует с двумя его сторонами углы 26° и 34°. Найдите больший угол параллелограмма.

Ответ дайте в градусах.